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ABSTRACT 

Point charges are often used in molecular simulations as part of the force field model of 

interatomic interactions and there are several ways of obtaining the values of such charges. 

Here, I present a method of calculating these charges from ab-initio calculations of charge 

density. Similar methods have been known for a long time and used on isolated molecules in 

vacuum. The approach presented here, instead, treats the material as fully periodic. 
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INTRODUCTION 

Studying materials using molecular simulations requires a force field model for a particular 

material which describes forces between atoms. Usually, a force field consists of spring-like 

contributions to the total energy approximating covalent bonds, repulsive contributions 

approximating Pauli repulsion, contributions approximating dispersion, and contributions 

describing electrostatics. While functional forms of bonded and repulsive contributions vary a 

lot, dispersion and electrostatics most often use the energy terms of −𝐴 𝑟6⁄  and 𝑞1 𝑞2 𝑟⁄ , 

respectively, where 𝑟 is interatomic distance, 𝐴 is the dispersion parameter and 𝑞1 and 𝑞2 are 

effective point charges [1]. 

Obtaining force field parameters, such as 𝐴 and 𝑞 above, can be very difficult. A classical force 

field is a crude approximation of actual interatomic forces, and we must choose which 

properties of the material under study will be reproduced faithfully and which we care less 

about. Than we either obtain these properties experimentally or via ab-initio calculations and 

fit the force field parameters to these properties. Both the experimental and ab-initio route have 

their advantages and disadvantages and both are very time consuming. However, at least in the 

case of point charges, it seems at first that there should be a way to compute them from raw 

results of a single ab-initio calculation. After all, electron charge distribution is the very thing 

ab-initio calculations compute, everything else is derived from that. 

There are two problems with this idea: there is no single way to assign a smooth charge 

distribution to some effective point charges, and there is in general no a-priori reason why such 

an assignment should be able to reproduce ab-initio molecular dynamics. The methods of 

assigning point charges can be divided into three classes: a) wave function methods which 

project the charge density on atomic orbitals (e.g. Mulliken or Löwdin charges [2]); b) 

geometric methods which partition the space into subvolumes for each atom (e.g. Voronoi or 

Bader charges [3]); c) methods which try to reproduce the electric field around molecules (e.g. 

Merz-Kollman charges [4]). The method described herein falls into the latter category, which 

offers the most hope of reproducing ab-initio molecular dynamics with a classical 

approximation. 
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METHODS 

Fitting point charges to the electrostatic field calculated ab-initio is typically done for isolated 

systems in vacuum. When dealing with a crystal such as a zeolite, a representative part of the 

structure is extracted and analyzed in vacuum. In such a scenario, doing electrostatic 

calculations is easy, as the electrostatic potential at point 𝑟can be calculated simply as 

𝜑(𝑟) =
1

4𝜋𝜀0
∫ 𝑑𝑟′

𝜌(𝑟′)

|𝑟−𝑟′|
 (1) 

where 𝜌is the charge density. This is not true in a periodic system where it is well known that 

electrostatic sums are only conditionally convergent, requiring advanced methods of 

performing the summation. Moreover, if the unit cell is not cubic, we must account for a non-

orthogonal coordinate system. One should also use different approaches for dealing with point 

charges or a smooth charge distribution. While all the methods are known, there is, to my 

knowledge, no existing software that would apply them to this problem. 

Ab-initio calculations typically produce electronic charge density on a regular grid. To compute 

the resulting electrostatic potential, we solve the Poisson equation, defined as 

𝛻2𝜑(𝑟) = −
𝜌

𝜀
, (2) 

on a three dimensional domain with periodic boundary conditions but a non-orthogonal 

coordinate system. Denoting the column-vector of Cartesian coordinates 𝑟and the column-

vector of crystal coordinates 𝑓,the triclinic Laplacian operator is written as 

𝛻2𝜑(𝒇) = 𝑡𝑟(𝑴
𝜕2𝜑

𝜕𝒇𝜕𝒇
), (3) 

where 𝑴 is the metric tensor of the domain. We can now proceed with the well known Fast 

Fourier Transform based method of solving the Poisson equation, where we use the fact that 

the Fourier transform changes a linear differential equation into an algebraic equation. 

This method, however, is ill-suited to computing the electrostatic potential of point charges, 

which means it can compute neither the ionic contribution to the electrostatic field nor the field 

of the point charge model. The closest thing to a point charge on a discrete grid is a 

parallelepiped-shaped charge distribution, which is not an adequate approximation, not least 

because the ions are rarely located exactly on grid points. If we really wanted to use a grid-

based method, we could use one of several methods of charge smearing [5], which reduce 

aliasing artifacts but introduce other trade-offs, one of them being complexity of 

implementation. Instead, we chose to use a standard Ewald summation, which is routinely used 

for calculating the electrostatic energy of systems of point charges. Instead of calculating the 

energy, we adapt the method to compute the electrostatic potential, yielding 

𝑉𝜑(𝑟) = ∑
𝑞𝑖

𝑟
erfc(𝛼𝑟)𝑖 + ∑ ∑

4𝜋𝑞𝑖

𝑘2
exp[𝑖𝑘⃗⃗ ⋅ (𝑟 − 𝑟𝑗⃗⃗⃗)]𝑖𝑘⃗⃗≠0 exp(−𝑘2 4⁄ 𝛼), (4) 
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where Gaussian units are used, 𝑉 is the volume of the unit cell and 𝛼 is a parameter deciding 

how much of the sum is done in real space and how much in Fourier space [1]. 

 

 

  
Figure 1. An example of AlPO4-34. a) The unit cell of AlPO4-34; the black volume represents the volume where 

test points can be inserted for the case of 2.0 Å exclusion zones around each atom. b) A slice through the AlPO4-

34 unit cell lying approximately in the plane of the ring. It shows the electronic charge density. c) The electrostatic 

potential produced by said charge density. d) The ionic potential. What we are trying to reproduce with a point 

charge model is the sum of (c) and (d). 

Now that we are able to deal with both smooth and point charges, we may approach the problem 

of fitting a point charge model to the ab-initio potential. First, the electrons' potential is 

computed, to which we add the potential of the ions. The model's potential will be compared to 

this total potential in a fixed set of points in space, which we denote "test points". It is important 

that these points are not placed too close to the atoms: there is no way for the effective charge 

a) b) 

c) d) 
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model to reproduce the electrostatic field near a smooth charge cloud and trying to do so is 

meaningless. Kollman and Singh found [4] that the minimum reasonable distance from each 

atom is about 1.2 van der Walls radii. Next, we insert the point charge model. The locations of 

point charges need not coincide with locations of the ions; in fact, it may be beneficial to put 

more charges into the model than there are actual ions, as is the case with water [6]. The point 

charges of the model can then be fitted using the very effective Levenberg-Marquardt algorithm 

[7], noting that the number of degrees of freedom is one less than the number of charge species 

because we require that the total charge of the unit cell is zero. 

CONCLUSION 

I outlined a method of fitting effective point charges in a periodic lattice. The implementation 

is still under development, as there are many details to take care of, e.g. dealing with neutrality 

of the unit cell which is formally required and the fact that the electrostatic potential is only 

determined up to an additive constant. This method is expected to yield insights into suitability 

of point charges for modeling crystalline systems. It can also be extended to more complex 

models, such as point dipoles. 
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